

Osoyoos Irrigation District
Water Supply and Treatment
Cost/Benefit Review

Public Meeting
October 23, 2008

Objective

- Review Project Requirements
- Review of Options
- Costs
- Recommended Alternative

- Identify cost-effective options to improve OID water quality.
 - Feasibility assessment of each design
 - Identify and recommend option with the best cost-benefit.

Deliverable

- Final Summary Report
 - Tech Memo 1 System Options Development
 - Tech Memo 2 Options Assessment

Existing OID System

- Constructed in 1967
- 140 Domestic Connections
- 40 agricultural connections
- 163 ha of agriculture
- Screen intake 10.7 m deep
 - 300 m intake to pump house on 45th St.
- Four vertical turbine pumps in wet well (158 Lps @ 110 TDH)
- Gas chlorination system
- A 180,000 litre balancing reservoir,
- Distribution system pipelines 75 mm to 300 mm
- Currently on a Standing Boil Water Notification.

Water Demand Design Criteria

Designed to meet maximum day demand (MDD)

- Residential Demand MDD = 180 connections at 900
 L/day = 0.175 ML/day.
- Agricultural Demand (163 ha) MDD = 13.1 ML/day.
- Total Combined Demand = 13.3 ML/day

Assumed Upgrades

- Loop the system
 - Based on TRUE (1988)
 - less water stagnation, improving taste and odour and minimizing corrosion.
- Fire flows through the existing irrigation system.
- New water meters.


Proposed Servicing Options

- Option 1 Osoyoos Lake Treated Supply
- Option 2 Osoyoos Lake Treated Domestic Supply
- Option 3 Groundwater Domestic Supply
- Option 4 Osoyoos Lake Supply with Point of Entry Treatment
- Option 5 Town of Osoyoos Supply

Option 1 – Osoyoos Lake Treated Supply

- Concept
 - All OID water treated to the minimum IHA.
 - New high lift pump station and WTP.
 - Existing station converted to low lift to feed the WTP.
 - WTP to treat 13.3 ML/day.
 - flocculation, clarification, filtration, chlorination and residue management and a building.
- Potential Issues
 - 98 % of capacity is to agriculture.
- Advantages
 - No pipeline twinning costs

Options 2 and 2a – Osoyoos Lake Treated Domestic Supply

Concept

- Twin pipeline strategically
- Add new WTP and pump house
- Option 2a assumes POE to farms
- New treated water supply main to the new twinned distribution system.
- The existing intake and pump station would continue to operate for irrigation and fire flow.

Advantages

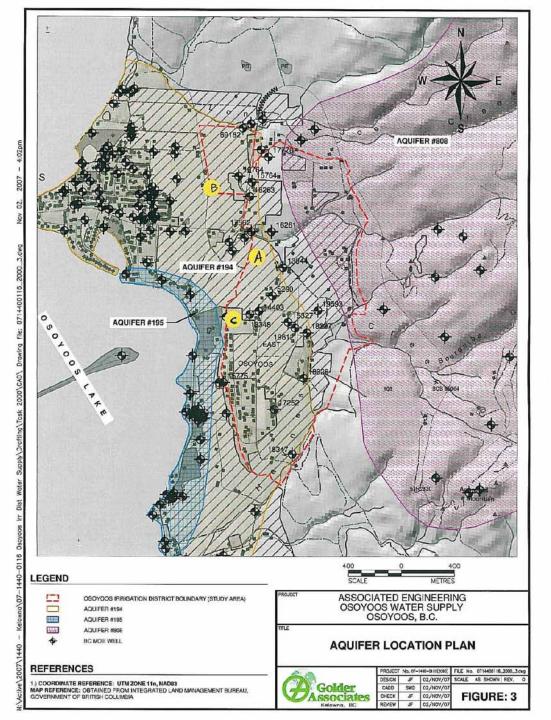
- All domestic users get treated water
- Fire still on Agr System

Potential Issues

Land ownership and location of WTP

Concept

- Golder Associates Ltd. examined using groundwater from a contained aquifer
- Assumed direct residential consumption only, not GUDI and within boundary
- Includes
 - well installations, new water supply mains and new chlorination units.
- Option 3a assumed adds POE instead of twinning to farms no directly in line.


Advantages

- Likely no WTP plant
- Lowest cost

Issues

- Quality of groundwater is not currently known
- Quantity must be verified.
- Twinning still required.
- Requires chlorination
- DBPD required at potential cross connections.

Option 4 – Osoyoos Lake Supply with Point of Entry Treatment

Concept

- Keep existing system and add POE.
- Advantages
 - No large initial capital cost
 - Little change to existing infrastructure.

Potential Issues

- Pump pressure may need to be increased, or local pressure upgraded.
- District continues to be at risk.
- High O&M costs
- Long term maintenance of irrigation system.

Option 5 - Town of Osoyoos Supply

- Concept
 - Construct twinned pipeline to domestic services,
 - Connect to Town Pipeline on Lakeshore.
- Advantages
 - Separates irrigation and domestic use.
 - Risk taken out of hands
- Potential Issues
 - Farms serviced by POE's or twinned pipe (OID responsibility?)
 - Town system is groundwater.
 - Rates not in control of OID users.
 - Cost of twinning pipeline may be higher due to fire flow.
 - Town currently not interested in absorbing District.

Evaluation of Options (TM-2)

- Cost and Cost Risk
 - capital cost, life-cycle cost per lot, government funding dependency, constructability, potential political implementation risk, direct ability to control future costs, and facilities site availability.
- Source Capacity/Quality
 - available source capacity, raw water quality, and source resilience to water quality deterioration.
- Treated Water Quality
 - treatment conformance with IHA, risk of human consumption of lower quality water, and flexibility for phasing filtration.
- Operation and Security
 - operational robustness, operational flexibility, and security.
- Environmental Impact
 - construction impacts and operational impacts.

Option	Name	Supply and Distribution System Capital Cost	Water Treatment Capital Cost	Capital Cost	Initial Annual O&M Cost
1	Osoyoos Lake Treated Supply	\$2,283,000	\$7,968,350	\$10,251,350	\$528,026
2	Osoyoos Lake Treated Domestic Supply	\$3,420,000	\$358,800	\$3,778,800	\$35,896
2a	Osoyoos Lake Treated Domestic Supply (POE in Rural Residences)	\$2,125,000	\$622,800	\$2,747,800	\$58,896
3	Groundwater Domestic Supply	\$3,613,000	\$23,400	\$3,636,400	\$20,466
3a	Groundwater Domestic Supply (POE in Rural Residences)	\$2,211,000	\$221,400	\$2,432,400	\$43,240
4	Osoyoos Lake Supply with POE Systems	\$764,000	\$1,188,000	\$1,952,000	\$138,820

Option	Name	Capital Cost	Capital Cost Based on Gov't Grant of 2/3 of Capital Costs	Inflated O&M Life Cycle Cost – 20 year	No. of Connections	Net Life Cycle Cost Per Connection	Total Annual Cost per Lot
1	Osoyoos Lake Treated Supply	\$10,251,350	\$3,617,000	\$12,829,640	180	\$103,524	\$5,176
2	Osoyoos Lake Treated Domestic Supply	\$3,778,800	\$1,460,000	\$872,177	180	\$17,863	\$893
2a	Osoyoos Lake Treated Domestic Supply (POE in Rural Residences)	\$2,747,800	\$1,116,000	\$1,431,017	180	\$17,900	\$895
3	Groundwater Domestic Supply	\$3,636,400	\$1,412,000	\$497,270	180	\$15,352	\$768
3a	Groundwater Domestic Supply (POE in Rural Residences)	\$2,432,400	\$1,011,000	\$1,050,607	180	\$14,851	\$743
4	Osoyoos Lake Supply with POE Systems	\$1,952,000	\$851,000	\$3,372,972	180	\$26,326	\$1,316

Notes:

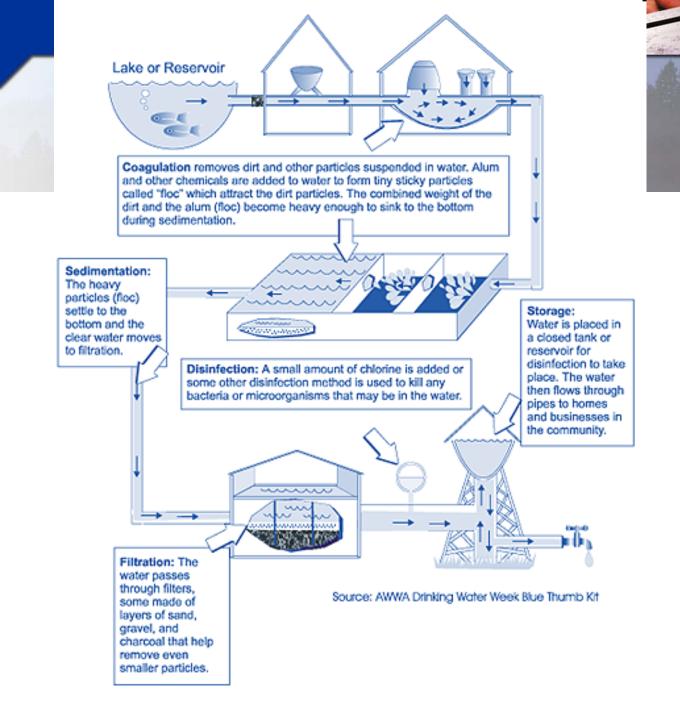
1) Assumed Interest Rate

erest Rate

2) Assumed Inflation Rate

3) Land Acquisition costs are not applicable for grant.

5.00%


2.00%

Recommendations

- The Regional District review this report with the Community at Large to receive feedback on the options presented herein and impacts on taxes.
- As a first step, water quality testing be completed for a full suite of parameters including metals, fertilizers, pesticides and microbiology to confirm the quality of groundwater and its suitability as a drinking water source.
- Confirm with the provincial government the potential for obtaining provincial government funding for the project.
- Assuming water quality meets project requirements, a test well should be drilled to confirm long term production capacity.
- Assuming that ground water quality and quantity meet project requirements, proceed on the basis of Option 3.
- Before proceeding with final design, the OID should further investigate reducing the design residential domestic demands with the implementation of flow metering.

