#### January 4, 2020

0825840BCLTD Granite Creek Quad Ranch 1500 Blackburn Road Coalmont B.C.

Regarding test results for sewage disposal system for proposed eight homes.

April 2019, excavated test holes at cabin sites.

Soil texture - gravity coarse to medium sand.

Soll grade - single grain.

Waste water loading rate for type one sewage disposal system 25-29 litres per square maters per day proposed.

Each home has sufficient area for type one disposal field and reserve disposal field.

When building permits are submitted for the eight homes as per the accompanying site plan, sewage disposal permits will be filed with interior health.

Auke Feenstra RQMP, planer, installer.

Feenstra Backhoe Ltd. Box 191 Agassiz B.C. VOM 1A0

604-796-3443 Fax - same asmap05@hotmail.com





6" Well Flow Test Granite Creek Guides 1500 Blakeburn Rd. VOX 1WO

February 14, 2020

The 6" 82 ft well at 1702 Rice Rd (Well ID plate # 26982) drilled by Fields Drilling Ltd. on April 20, 2010. This well supplies potable drinking water to the buildings at 1500 Blakeburn Rd.

The static level (non pumping level) was measured at 7ft 7" from the top of the casing (FTOC)

The water well was pumped using a 2" Honda gas pump with suction hoses installed

The flow was measured using a 5GPM US. bucket. (20Liters)

Pumping started at 11:30 PM and stopped at 12:30 PM.

The pumping level was 8ft 2" (FTOC) while pumping 75GPM (283LPM) for the duration of the 1hr flow test. The difference between the static and pumping level was .5ft or 6"

The pump was stopped at 12:30 PM and the water level came back to original static within 20 seconds.

The specific capacity on this well is 150GPM/Ft of available drawdown. (.5ft of drawdown@ 75GPM)

This well is easily capable of producing enough water for the proposed additional dwellings.

In the 1hour duration we pumped approximately 4500 Gallons or (17,000liters)

Thank you,

Albert Oostenbrink

BC Qualified Well Driller

BC Qualified Pump Installer

CHILLIWACK LETHBRIDGE RED DEER OLIVER

TEL: 604.792.0041 TEL: 403.394.0042 TEL: 403.346.0043 TEL: 250.485.0246 44160 Yale Road West, Chilliwack, BC V2R 3Z9 511-41<sup>sr</sup> Street North, Lethbridge, AB T1H 7B6 246 Belich Drive, Red Deer, AB T4S 2K5 5830 Sawmill Road, Oliver, BC V0H 1T9

#bluecrev #intelligentwatersolution

# FIELD DRILLING CONTRACTORS LTD

P. O. Box 841 25320 Fraser Highway Aldergrove, BC V4W 2V1

 Phone:
 (604)857-2266

 Toll free:
 1-866-857-2266

 Fax:
 (604)857-2267

## WATER WELL RECORD

| OWNER: GRANITE CREEK COTTAGES | DATE: APRIL 20, 2010       |  |
|-------------------------------|----------------------------|--|
| ADDRESS: 49862 YALE ROAD      | SITE ADDRESS: COALMONT, BC |  |
| CHILLIWACK, BC V4Z 0B3        |                            |  |
| PHONE: 604-316-2838           |                            |  |

| Date Begun:                       | APRIL      |              | FROM | TO | WELL LOG DESCRIPTION             |
|-----------------------------------|------------|--------------|------|----|----------------------------------|
| Date Completed:<br>Hole Diameter: | APRIL      |              | 0    | 6  | TOPSOIL                          |
| Surface casing:                   | 6          | Inch         | 6    | 13 | COBBLES AND SAND                 |
| Dia: 10"                          | 15         | Feet         | 13   | 15 | W.B. SAND & GRAVEL               |
| Drive shoe:                       | YES        |              | 15   | 25 | SILTY, W.B. FINE GRAVEL & SAND   |
| MEASUREMENTS<br>GROUND LEVEL:     | FROM       |              | 25   | 30 | CLEAN W.B. COARSE SAND           |
| Stick-Up:                         | 2          | Feet         | 30   | 50 | SILTY BROWN SAND & GRAVEL        |
| Bottom of Casing:                 | 73         | Feet         | 50   | 70 | COARSE W.B. SAND & GRAVEL        |
| Hole Depth:<br>Open Hole: From:   | 95         | Feet<br>Feet | 70   | 82 | CLEAN COARSE SAND, SMALL GRAVEL  |
| To:                               |            | Feet         | 82   | 95 | IRONY RED FINE SAND, SOME GRAVEL |
| SCREENS:                          |            |              |      |    |                                  |
| Number of Screens:<br>Slot Size:  | 2          |              |      |    |                                  |
| Slot 60                           | Slot       | 30           |      |    |                                  |
| Slot                              | Slot       |              |      |    |                                  |
| Screen Length:                    | 10<br>11   | Feet         |      |    |                                  |
| Top at: 71 Feet                   | 1          | Inch<br>Inch |      |    |                                  |
| Bottom At: 82 Feet                |            | Inch         | 8    |    |                                  |
| K. Packer: YES                    | Riser:     | 2Ft          |      |    |                                  |
| B. Bottom: YES                    |            | 2.1          |      |    |                                  |
| WELL<br>COMPLETION:               |            |              |      |    |                                  |
| Rate:                             | 125+       | GPM          |      |    |                                  |
| Pump Setting:                     | 125+<br>69 | GPM<br>Feet  |      |    |                                  |
|                                   |            |              |      |    |                                  |
| Static Water Level:               | 3 1/2      | Feet         |      |    |                                  |
| Develop:                          | 5          | Hours        |      |    |                                  |
|                                   |            |              |      |    |                                  |

SITE LEGAL DESCRIPTION:

WELL I.D. 26982

NAME: GRANITE CREEK COTTAGES NUMBER: 4125-5 SHOULD BE PUMP TESTED FOR EXACT GPM

Rig No: 5Rotary: YES<br/>Cable:Driller:DARYL SMITH<br/>Helper:Helper:ROB SPENCER



Ministry of Environment Test Report Stamp company name/address/ phone/fax/e-mail here. Ministry Well ID Plate Number: <u>26982</u> Ministry Well Tag Number: \_\_\_\_\_

Red lettering indicates minimum mandatory information. Requirements for flow reports are found in Part 5 of the Water Act, available at: http://www.env.gov.bc.ca/wsd/plan\_protect\_sustain/groundwater/index.html#leg.

| Owner name: Granite Creek Guides                                                                 |                                                  |                                                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Mailing address: 1500 Blakeburn Road                                                             | Town Coalmont                                    | Prov. BC Postal Code V0X 1W0                          |  |  |  |  |
| Well Location: Address: Street no. 1702                                                          | Street name_Rice Road                            | Town_Coalmont                                         |  |  |  |  |
| or Legal description: Lot Plan                                                                   | D.LBlockSecTw                                    | /pRgLand District                                     |  |  |  |  |
| or PID: 014-998-963 and Description o<br>In field near bush area on right of way from Bert Rice. | NW comer of field                                |                                                       |  |  |  |  |
| NAD 83: Zone: and UTM Easting:                                                                   | m or Latitude:                                   | deg: 49 min: 30 sec: 25.59N                           |  |  |  |  |
| (Datum must be set to NAD83) UTM Northing:                                                       | m Longitude                                      | e: deg: <u>120</u> min: <u>41</u> sec: <u>12.59</u> W |  |  |  |  |
| Ground elevation:(ft) asl M                                                                      | Aethod: □ GPS □ Differential GPS □ Lev           | vel survey                                            |  |  |  |  |
| Class of well (see Table 1): Water Supply Sub-class of well: private domestic                    |                                                  |                                                       |  |  |  |  |
| Water supply wells: indicate intended water use: D pri                                           | vate domestic 🗆 water supply system 🗆 irrigation | □ commercial or industrial □ other (specify):         |  |  |  |  |

#### **Pumping Test Summary Information**

| Trees of all                                                 |                                                                                                                                                                   |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of well pump:                                           | Pumping test data sheet(s) attached:                                                                                                                              |
| I Submersible ☐ Jet (end-suction)                            |                                                                                                                                                                   |
| Vertical turbine      Other (specify Gas Pump                | Person conducting the pumping test (please print):                                                                                                                |
| Depth of pump setting: 69 ftft (btoc)                        | Name (first, last): Albert Oostenbrink                                                                                                                            |
| Type of Pumping Test:                                        | Company name: Peters Well Drilling                                                                                                                                |
| ☑ Constant Rate □ Step Test □ Other (specify)                | Registration number of person responsible*: WD08101501                                                                                                            |
| Method of water level measurement:                           |                                                                                                                                                                   |
| ☑ Water level sounder 	□ Datalogger 	□ Air line              | Consultant (if applicable; please print):                                                                                                                         |
| □ Wetted tape □ Other (specify)                              | * Fill in the registration of the Qualified Well Driller/Pump Installer. If the test                                                                              |
| Reference datum for water level measurements:                | was conducted by a driller/pump installer who is not registered, the Qualified<br>Well Driller/Pump Installer who is directly supervising the work should fill in |
| ☑ Top of casing 	☐ Ground level 	☐ Other (specify)           | their registration number.                                                                                                                                        |
| Final stick-up: 2.5 ft                                       | a d ♥ oversenset oversedorset.                                                                                                                                    |
|                                                              |                                                                                                                                                                   |
| Method of flow measurement:                                  | Declaration:                                                                                                                                                      |
| □ Flow meter □ Orifice □ 45-gallon drum ⊠ 5-gallon pail      | The pumping test has been done in accordance with the requirements in the                                                                                         |
| Other (specify)                                              | Water Act and the Ground Water Protection Regulation.                                                                                                             |
| Start date of pumping test: 2020/02/14 (YYYY/MM/DD)          | PLEASE NOTE: The data recorded in this pumping test report reflect<br>conditions at the time of the test. Water levels, well performance, estimated               |
| Static water level: 7 ft-7 in TOC ft                         | long-term well yield and water quality are not guaranteed as they are                                                                                             |
|                                                              | influenced by a number of factors, including natural variability, human                                                                                           |
| Duration of pumping: hrs Duration of recovery: hrs           | activities, and condition of the works, which may change over time.                                                                                               |
| Well yield estimated from pumping test: 75 USgpm             | Signature of Person Responsible:                                                                                                                                  |
| Available drawdown: 50 ft Specific Capacity: 150 USgpm/ft    | x a Castrul                                                                                                                                                       |
| Method of estimating long-term well yield from pumping test: |                                                                                                                                                                   |
| 5 gallon bucket                                              |                                                                                                                                                                   |
|                                                              |                                                                                                                                                                   |
|                                                              |                                                                                                                                                                   |
|                                                              |                                                                                                                                                                   |

Note: Well reports submitted to the Deputy Comptroller, or retained by the person responsible, as required under the Water Act shall be considered part of Provincial Government records and are subject to the Freedom of Information and Protection of Privacy Act.

Return Completed Report and Data Sheets to: Deputy Comptroller Ministry of Environment, Water Stewardship Division Watershed & Aquifer Science Section PO Box 9362 Stn Prov Govt Victoria BC V8W 9M2

Questions? If you have any questions about the Water Act or this report form, please contact your local Ministry of Environment office.

white: Customer copy canary: Driller copy pink: Ministry copy

## Pumping Test Drawdown Data Sheet

| ⊠ Pumping well □ Obs                                                 | ervation well inclu                  |                       | 00000                                                                                   | (include well name)                                                                                                                            |
|----------------------------------------------------------------------|--------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of pumping test:                                                |                                      | □ Step                | and Other (specify): and                                                                | d distance to pumping well:ft or m (circ                                                                                                       |
|                                                                      |                                      |                       |                                                                                         | water level prior to pumping: 7.7                                                                                                              |
|                                                                      |                                      |                       |                                                                                         | Water level at end of pumping: 8.2                                                                                                             |
| Time since pumping<br>started (min) (enter to<br>the nearest minute) | Measured<br>water level (m<br>or ft) | Drawdown<br>(m or ft) | Measured pumping rate (USgpm,<br>lgpm, l/s) (enter pumping rate<br>before re-adjusting) | Remarks or observations (e.g., pumping<br>rate adjusted, field water quality<br>observations, weather observations,<br>water sample collected) |
| 11:30                                                                | 8.2                                  |                       | 75 GPM                                                                                  | murky, dirty water                                                                                                                             |
| 11:31                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:32                                                                |                                      |                       |                                                                                         |                                                                                                                                                |
| 11:33                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 11:34                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:35                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 11:36                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:37                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 11:38                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:39                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 11:40                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:42                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:44                                                                | 8.2                                  |                       | 75 GPM                                                                                  | Clear Water                                                                                                                                    |
| 11:46                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:48                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 11:50                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:52                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 11:54                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 11:56                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 11:58                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 12:00                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 12:05                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 12:10                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 12:15                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 12:20                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |
| 12:25                                                                | 8.2                                  |                       |                                                                                         |                                                                                                                                                |
| 12:30                                                                | 8.2                                  |                       | 75 GPM                                                                                  |                                                                                                                                                |

Notes: Drawdown is the difference between the measured water level during pumping and the static water level prior to pumping.

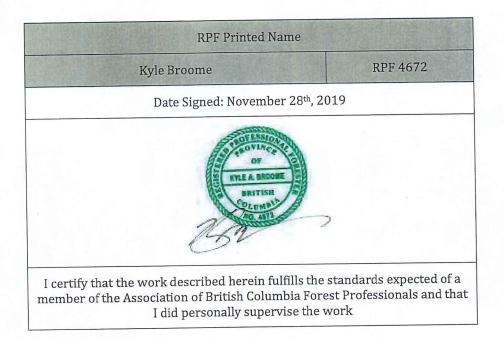
## Pumping Test Recovery Data Sheet

| Pumping test rec                                                                                                                   | (include well name)                                                     |                                                                 |                                   |                                   |                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------|--|
| E Pumping well Observation well, include well ID plate number (if available): 26982 and distance to pumping well: ft or m (circle) |                                                                         |                                                                 |                                   |                                   |                                                     |  |
| Type of pumping test:  Constant rate Step Other (specify):                                                                         |                                                                         |                                                                 |                                   |                                   |                                                     |  |
| Date and time at er                                                                                                                | nd of pumping (YYYY                                                     | //MM/DD; hh:mm): 2020/02/14                                     | 1Sta                              | tic water leve                    | I prior to pumping: 7.7 ft                          |  |
|                                                                                                                                    |                                                                         | 1                                                               | 12:30 PM                          | Water lev                         | rel at end of pumping: 8.2 ft                       |  |
| Time since<br>pumping started<br>(min) (enter to the<br>nearest minute)                                                            | Time since<br>pumping stopped<br>(min) (enter to the<br>nearest minute) | <u>Time since pumping started</u><br>Time since pumping stopped | Measured water<br>level (m or ft) | Residual<br>drawdown<br>(m or ft) | Remarks or observations (e.g. weather observations) |  |
| 12:32                                                                                                                              |                                                                         |                                                                 | 7.7 ft                            |                                   | backup to original static in 20 sec.                |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   | after pumping stopped.                              |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 | -                                 |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 | ×                                 |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
|                                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |
| Notes Devided 1                                                                                                                    |                                                                         |                                                                 |                                   |                                   |                                                     |  |

Notes: Residual drawdown is the difference between the measured water level during recovery and the static water level prior to pumping.



# Fire Mitigation Report for 1500 Blakeburn Rd, BC


Submitted by: Kyle Broome, RPF & Sidney Potter, BSc

Submitted to: Regional District Okanagan Similkameen





# **Registered Professional Signature**





(

## Contents

.

| Fire Mitigation Report for 1500 Blakeburn Rd, BC                                                |
|-------------------------------------------------------------------------------------------------|
| Registered Professional Signature1                                                              |
| SECTION 1: Introduction                                                                         |
| SECTION 2: Wildfire Factors                                                                     |
| 2.1 Topography & Geography4                                                                     |
| 2.2 Climate & Weather                                                                           |
| 2.3 Vegetation & Fuel                                                                           |
| 2.3.1 Fuel Types                                                                                |
| 2.3.2 Fuel Groups                                                                               |
| SECTION 3: WTA Methods & Results                                                                |
| 3.1 Plot 1 Site Level Fuel Assessment                                                           |
| 3.2 Plot 2 Site Level Fuel Assessment                                                           |
| 3.3 Site Priority Setting Scoring                                                               |
| 3.4 Stand-level Measurements                                                                    |
| SECTION 4: Fuel Management and Treatment9                                                       |
| 4.1 Treatment Specifications and Regimes                                                        |
| 4.1.1 General Stand Description                                                                 |
| 4.2 FireSmart                                                                                   |
| 4.2.1 Priority Zone 1                                                                           |
| 4.2.2 Priority Zone 2 and 311                                                                   |
| 4.3 Recommendations11                                                                           |
| Appendix I: Wildfire Threat Assessments13                                                       |
| Appendix II: Wildfire Threat Assessment Photos16                                                |
| Appendix III: FBP Fuel Type Photos                                                              |
| Map 1 WTA Treatment Units Based on FBP Fuel Types19                                             |
| Appendix VII: References                                                                        |
| BC Wildfire. (2019). Types of Wildfire. Retrieved from Alberni-Clayoquot Regional District:<br> |



### **SECTION 1: Introduction**

A Wildfire Threat Assessment (WTA) examines the susceptibility of an area to wildfire by analyzing factors such as fuel, topography, and weather (FLNRO, 2017). Using a scoring system, a threat rating is determined for a site after the completion of the assessment. The objectives of a WTA are to:

- 1) Ensure that fire hazards are identified
- 2) Determine whether fuel hazard abatement is required
- 3) Provide treatment specifications and recommendations

With meeting the objectives listed above, this report will outline relevant details on the fuel, topography, and climate specific to 1500 Blakeburn road. The results and interpretations of the WTA and the cruise data will also be documented in the report. This report will conclude with treatment specifications and recommendations for hazard abatement (FLNRO, 2017).

Located in the Interior Douglas fir Biogeoclimatic dry, cool variant zone (IDFdk2), the falls under the Regional District Okanagan Similkameen (TEI, 2019). On November 12, 2019 a site review of the property was conducted in accordance with BC Wildfire Service Wildfire Threat Assessment. A threat rating of **High** was assigned to the site based on two fuel assessments and 8 stand assessments. (FLNRO, 2017).

## **SECTION 2: Wildfire Factors**

This section outlines the three key factors that influence fire behavior: weather, topography, and fuel. The relevance of each factor, in reference to wildfire behavior, will be described and then applied to the site in SECTION 3: of this report. The focus will be on fuel as this is a factor, we can influence at a more direct level. Although topography and weather cannot be adjusted to reduce wildfire threats, a foundational knowledge of their influence is beneficial in mitigating against wildfires.

#### 2.1 Topography & Geography

Slope and aspect are both descriptors of topography, each having major influence on wildfire activity. A greater slope means increased fire spread; this is due in part to the convection of heat upwards and the angling of the flame towards the fuel ahead. The convecting heat dries the fuels while the angled flame can access the fuel ahead. Aspect influences what fuels are present and how much moisture they hold. A north facing aspect will receive less solar radiation and more precipitation and therefore have heavier fuel loads and higher moisture content. Contrarily, a south facing slope will be exposed to more solar radiation, less precipitation and have lighter fuel loads and lower moisture content (Idaho Firewise Inc, 2019). *Slope percent, slope position of value,* and *aspect* are examined in the Priority Setting Scoring to determine rate of spread and fuel size/moisture (FLNRO, 2017).

#### 2.2 Climate & Weather

More variable than topography and fuel, the only thing consistent about climate, is change. Even more so, weather can be unpredictable and change quickly. Weather's influence on fire comes down to its impact on fuel moisture and the direction in which fire travels. Temperature, precipitation, wind, and relative humidity are all relevant characteristics of weather that must be considered when analysing wildfires (Idaho Firewise Inc, 2019). *Predominant wildfire spread direction* is the single weather component examined; it determines wildfire rate of spread and direction of spread (FLNRO, 2017).

#### 2.3 Vegetation & Fuel

Wildfires need fuel, oxygen, and an ignition source to catch fire. Fuels for wildfires are any combustible materials including, but not limited to, trees - alive and dead-, shrubs, herbs, woody debris, and duff. Different characteristics of fuel play a role in wildfire behaviour such as rate of spread and head fire intensity. These characteristics include fuel type, continuity, size, and loading, each of which is measured in the fuel assessment. Fuel loading is in reference to the amount of fuel present, both horizontally and vertically. The size of fuel influences how easily it will ignite; continuity and distribution impacts rate and amount of wildfire (FLNRO, 2017).



2.3.1 Fuel Types

Fuel type can be identified using those outlined by the Fire Behaviour Prediction (FBP) system. FBP fuel types of relevance to this report are immature Lodgepole pine (C4), Ponderosa pine/Douglas fir (C7), and leafless aspen (D1) (Natural Resources Canada, 2019).

- C4: Encompasses immature Lodgepole pine (Pl) with some surface fuel loads of dead, downed woody fuel. Figure 8. FBP Fuel Type C4: Immature Lodgepole pine illustrates this fuel type on site.
- C7: Are open stands with uneven aged Ponderosa pine (Py) and Douglas fir (Fd). C7 fuel type can also be defined by: a canopy cover of less than 50%, needle dominant surface fuel, and a nearly non-existent organic layer. Figure 7. FBP Fuel Type C7: Ponderosa pine/Douglas fir illustrates this fuel type on site.
- D1: On site are stands of pure semi mature leafless Trembling aspen (At). Understory is likely made up of tall shrubs with some dead down fuels and deciduous leaf litter surface fuels. Figure 9. FBP Fuel Type illustrates this fuel type on site.

#### 2.3.2 Fuel Groups

Fuel can be divided into 4 groups, each of which is assessed during a WTA (BC Wildfire, 2019):

- **Ground Fuel**: combustible material below the surface of the ground. This includes duff and the organic layer of soil. The depth of the organic layer is measured in the WTA to reflect fuel moisture and rate of ignition.
- **Surface Fuel**: ground surface litter including dead wood and needles. *Surface fuel composition* and *dead and down material continuity* are both examined because different fuel types result in different fire intensity, rate of spread, fuel moisture, and flame length.
- **Ladder Fuel**: encompasses understory and fuel typically 1-3m in height, which allow for a fire to transfer from the surface to the crown. *Ladder fuel composition, horizontal continuity,* and *amount of understory* are all quantified to assess the stands ability to support a crown fire. The ability of a stand to support a crown fire is of extreme relevance as these are the most intense and consequently, the most dangerous fires.
- **Crown Fuel**: needles in the trees canopy as well as any limbs, cones, or plant growth. *Overstory composition, crown closure, fuel strata gap, amount of overstory,* and *percent of dead/dying stand* are all inspected; illustrating the ability of the crown to support a fire and the ability of the flame to transition from ladder fuels to crown fuels (USDA Forest Service)



SECTION 3: WTA Methods & Results

### SECTION 4: This section outlines the methodology and results of the WTA. From the collected data, conclusions on treatments will be extracted and discussed in

SECTION 4: Fuel Management and Treatment. A WTA is made up of two worksheets: The <u>Priority</u> <u>Setting Scoring</u> and the <u>Site Level Fuel Assessment</u>. The <u>Priority Setting Scoring</u> collects information on topography, weather, and any previous mitigation activities conducted in the area of interest (AOI). <u>Site Level Fuel Assessment</u> is a detailed analysis of ground, surface, ladder, and crown fuels in the AOI. Two Site Level Fuel Assessments were conducted on site; plot 1 was in Lot 8, while plot 2 was in Lot 7. A singular Priority Setting Scoring is required per site. Refer to Appendix I: Wildfire Threat Assessments for the completed work sheets.

### 3.1 Plot 1 Site Level Fuel Assessment

Using a 3.99m fixed-radius plot, the AOI was examined; 11 components were given a level/class, each with an associated value. The sum of the 11 values provided a score of 77/110. Using the derived score from the assessment a threat rating of **High** was assigned to the site, see **Error! Reference source not found.** 

## 3.2 Plot 2 Site Level Fuel Assessment

Using a 3.99m fixed-radius plot, the AOI was examined. The 11 components examined in plot 1 were reexamined in plot 2. The sum of the 11 values provided a score of 75/110. Using the derived score, a threat rating of **High** was assigned to the site, see **Error! Reference source not found.** 

### 3.3 Site Priority Setting Scoring

The Priority Setting Scoring was conducted at plot 1; 9 components were given a level/class, each with an associated value. The sum of the 9 values provided a score of 42/110. This is a separate score that is only applicable when comparing and prioritizing treatment areas. Since this assessment has a single treatment area, the information provided by the Priority Setting Scoring is strictly an asset in determining fuel management strategies.



#### Table 1 Threat Rating Table

| Threat Rating (Max Score 110)                 |        |          |         |          |  |  |
|-----------------------------------------------|--------|----------|---------|----------|--|--|
| Eco - province                                | Low    | Moderate | High    | Extreme  |  |  |
| Coast and<br>Mountains, Georgia<br>Depression | 0 - 43 | 44 -59   | 60 - 72 | 73 - 110 |  |  |
| Central Interior                              | 0-46   | 47 - 63  | 64 - 77 | 78 - 110 |  |  |
| Southern Interior                             | 0-51   | 52 - 71  | 72-86   | 87 - 110 |  |  |
| Southern Interior<br>Mountains                | 0-51   | 52 - 71  | 72-86   | 87 - 110 |  |  |
| Sub Boreal Interior                           | 0-43   | 44 -59   | 60 - 72 | 73 - 110 |  |  |
| Boreal Plains                                 | 0 - 43 | 44 -59   | 60-72   | 73 - 110 |  |  |
| Northern Boreal<br>Mountains, Taiga<br>Plains | 0 - 40 | 41 - 56  | 57 - 68 | 69 - 110 |  |  |





# **3.4 Stand-level Measurements**

8 stand-level assessments were conducted to gather information on the current under and overstory stand conditions. The tables below summarize the data collected during the Stand-level measurements and are outlined by treatment unit as illustrated in Map 1 WTA Treatment Units Based on FBP Fuel

Types.

| Layer                      | Layer Description           | Species % | Stems/ha | Mean<br>DBH | Mean Total<br>Height | Crown<br>Closure (%) |
|----------------------------|-----------------------------|-----------|----------|-------------|----------------------|----------------------|
| Overstory (L1)             | >17.5cm                     | Pl10      | 300      | 27.1        | 19.8                 | 35 - 55%             |
| Overstory<br>Submerch (L1) | 12.5-17.5cm DBH             | -         | -        | r           | I                    |                      |
| Poles (L2)                 | 7.5-12.5cm DBH              | Fd10      | 100      |             |                      |                      |
| Saplings (L3)              | 0-7.5cm DBH<br>>1.3m height | Pl6Fd4    | 900      | 5.          |                      |                      |
| Regen (L4)                 | <1.3m height                | Pl4Fd6    | 800      |             |                      |                      |

#### Table 2 Pre-treatment Unit 1 - C4 Lodgepole Pine Fuel Type

| Table 3 Pre-treatment Unit 2 - C | 7 Douglas Fir Fuel Type |
|----------------------------------|-------------------------|
|----------------------------------|-------------------------|

| Layer                      | Layer Description           | Species %                       | Stems/ha | Mean<br>DBH | Mean Total<br>Height | Crown<br>Closure (%) |
|----------------------------|-----------------------------|---------------------------------|----------|-------------|----------------------|----------------------|
| Overstory (L1)             | >17.5cm                     | Pl2Fd8                          | 333      | 27.9        | 19.86                | 35%                  |
| Overstory<br>Submerch (L1) | 12.5-17.5cm DBH             | Pl <sub>10</sub>                | 133      |             |                      |                      |
| Poles (L2)                 | 7.5-12.5cm DBH              | Fd <sub>10</sub>                | 533      |             |                      |                      |
| Saplings (L3)              | 0-7.5cm DBH<br>>1.3m height | Pl <sub>2</sub> Fd <sub>8</sub> | 1100     |             |                      |                      |
| Regen (L4)                 | <1.3m height                | Fd <sub>10</sub>                | 2700     |             |                      |                      |



# **SECTION 4: Fuel Management and Treatment**

The section provides information on FireSmart, fuel management information, and treatment specifications for the site.

# **4.1 Treatment Specifications and Regimes**

Treatment specifications include brushing, pruning, fuel removal, and debris disposal. The area has been broken up into 4 treatment units based on the fuel types described in section 2.3.1 Fuel Types.

## 4.1.1 General Stand Description

All treatment zones are located in the Interior Douglas fir Biogeoclimatic dry, cool variant (IDFdk2). The Interior Douglas fir BEC zone is found in low to mid elevations of the Okanagan-Similkameen, here warm, dry summer seasons and cool winters are experienced. This stand is dominated by Douglas fir trees and predominantly grassy understory. Lodgepole pines are common at higher elevations, as seen in both TU1 and TU2. In both treatment units understory is dominated by regen and sapling Douglas fir. TU3 is a small island of Trembling aspen while TU4 is the hydro corridor composed of grasses and shrubs, this treatment unit requires no treatment actions. Refer to Map 1 WTA Treatment Units Based on FBP Fuel Types.

| TU | Stand Description (Fuel Type if applicable) | Treatment Type | Debris Management | Debris<br>Disposal |
|----|---------------------------------------------|----------------|-------------------|--------------------|
| 1  | C4 Immature jack lodgepole pine             | HTR TFB        | SFR P             | PB CDAR            |
| 2  | C7 Ponderosa pine – Douglas Fir             | HTR TFB        | SFR P             | PB CDAR            |
| 3  | D1 Leafless aspen                           | HTR            | SFR               | PB CDAR            |
| 4  | Hydro Right of Way                          | -              | -                 | -                  |

| Table 4 Treatment Unit Sp | pecifications Summary Table |
|---------------------------|-----------------------------|
|---------------------------|-----------------------------|

Treatment Type Key Hazardous Tree Removal (HTR), Thin from Below (TFB), Surface Fuel Removal (SFR), Prune (P), Pile Burn (PB), Chip Debris and Remove (CDAR)



| Table 5 Treatment Type Specifications                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Treatment Type                                                                                                   | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Hazard Tree<br>Removal (HTR)                                                                                     | <b>TU1-3:</b> All hazardous trees are to be felled before other treatment activities can take place. Modified work procedures can take place to avoid the unnecessary removal of high value wildlife trees.                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Thinning from<br>below (TFB)<br><b>Target</b><br>L1 submerch, L2 and<br>L3 combined 200sph<br>Stump height <10cm | <b>TU 1 and 2:</b> Removal of L1 submerch, L2 and L3 to achieve <b>targets of 200sph</b> . Where applicable, preferred retention of more fire resistant Fd over Pl. To provide natural barriers from noise and dust pollution as well as mimic natural variation in stand-level structure, clumps of Pl and Fd can be retained assuming they do not pose a threat as a significant ladder fuel hazard. This may be left to supervisor discretion and can only be carried out where practicable. |  |  |  |  |  |
| Stump angle <20 deg                                                                                              | All Deciduous and L4 regen are "ghost trees" and should not<br>contribute to target densities, they are therefore exempt from TFB<br>treatments                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Prune (P)<br><b>Target</b><br>3m Crown Base Ht                                                                   | <b>TU 1 and 2</b> : Prune all L1 and L1 submerch species to increase crown base height to a minimum of 3m. Cut branches flush to branch collar.                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Surface Fuel<br>Removal (SFR)<br><b>Target</b><br>CWD 15pieces/ha<br>FF <0.5kg/m2                                | Following brushing and pruning, fuel should be removed in areas<br>where surface fuel amounts to <0.5kg/m2 via mechanical or manual<br>means. All jackpots should be completely removed from the property.                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                  | Coarse woody debris (>12cm diameter) is important to ecosystem<br>and representative of natural forest dynamics. Retention of 15<br>pieces/ha that is >12cm diameter and >3m in length with random<br>distribution is acceptable.                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                  | Fine Fuel (<12cm diameter) should not exceed <0.5kg/m2. Excess of this target should be pile burned or chipped and hauled/dispersed                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Pile Burn (PB)                                                                                                   | All burning to be conducted must be in compliance with RDOS bylaws<br>and permits. Burning days must fall under the appropriate Air Quality<br>and Venting Index.                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                  | Burn piles should be on site, ideally occurring concurrently with thinning operations to reduce post-treatment fuel loading. Burn piles should not exceed size of 3x3x1m tall (category 3)                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Chip Debris and<br>Remove (CDAR)<br><b>Target</b><br>Chip layer<10cm                                             | An additional/alternative form of debris disposal is chip and disperse<br>or chip and haul offsite. If chipping and dispersing have a maximum<br>chip depth on site of 10cm                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |



#### 4.2 FireSmart

FireSmart is a wildfire educational program for homeowners and communities, outlining steps that can be taken to reduce the risk of wildfires and to provide a landscape in which firefighters can defend our homes more effectively. Working from the priority value, in this case where the house will be built, into the surrounding landscape is the most effective way to carry out fuel management. The FireSmart Homeowners Manual divides properties into 3 priority zones that encompass working from the home, outwards (FireSmart Canada, 2018).

#### 4.2.1 Priority Zone 1

Zone 1 includes the house and the property within a 10m radius; this is the most important zone. There should be no easily ignitable fuels in this area; all landscaping should be done with native, fire resistant vegetation. Using crushed rock in landscaping around the home is another way to mitigate against wildfires impact (FireSmart Canada, 2018).

Other factors to consider are the materials used when building structures. The structure located presently on the property has some good examples of fire resistant building materials such as metal roofing and enclosed eaves. Some FireSmart improvements would be enclosing the openings under the structure and deck as sparks and embers can easily settle and ignite here, see Figure 6 Recommended FireSmart Improvements. Fire rated doors, double pained windows, and the installation of a spark arrestor in the chimney are other steps that can be taken to fire proof structures. Refer to the FireSmart Homeowners Manual for further examples of fire-resistant and retardant materials to build your structure with. Once structures are built, upkeep includes but is not limited to, regular removal of debris from gutters, corners, eaves, and vents (District of Lake Country, 2018).

#### 4.2.2 Priority Zone 2 and 3

Priority Zone 2 spans from 10 to 30m outside of the structure while Priority Zone 3 covers 30 to 100m outside the house. Priority zone 2 should have a minimum spacing of 3m between trees to prevent the progression of crown fires. All ladder fuels should be removed to allow for a minimum spacing of 2m between the tree canopy and ground to prevent surface fires from turning into a crown fire. (FireSmart Canada, 2018). In Priority Zone 3 is the first line of defence against approaching wildfires, therefore FireSmarting here must not be overlooked. Continuation of removing ladder fuels and spacing trees a minimum of 3m apart is recommended (FireSmart Canada, 2018)

#### **4.3 Recommendations**

- 1. Communication with adjacent property owners to promote the continuation of fuel treatment into surrounding area.
- 2. In addition to the metal roofing, implementing other fire resistant and retardant materials to the construction of the home



- 3. FireSmart landscaping in priority zone 1, including planting fire resistant, native vegetation and decorative crushed rock
- 4. Regular property maintenance such as cutting the grass in priority zone 1 and debris removal from gutters, eaves, corners, and vents.



# **Appendix I: Wildfire Threat Assessments**

| Imont, BC<br>50543 Langitude<br>contain (species %)<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composition<br>Composit | 120.69346<br>Fd5PI5<br>Fd10<br>2 - <5 cm                                                                                                                                                   | Levels / i                                                                                                                                                                                                                                                                                                                                  | ABCEP No. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL SCORE                                                                                                                                                                                                              | 77                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| opsition (species %)<br>Composition<br>Component<br>ganic Layer<br>of Organic Layer (cm)<br>Facel (0.1 - 1.0 meters in beigt<br>to fuel (0.1 - 1.0 meters in beigt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fd10<br>2 - <5 cm                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                             | Causes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL SCORE                                                                                                                                                                                                              | 77                                                                                                                                                                                                                           |  |
| Composition<br>Component<br>ganis Layer<br>d Organis Layer (cm)<br>Facel (0.1 - 3.0 meters in beigt<br>to fuel (0.1 - 3.0 meters in beigt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 - <5 cm                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                             | Casas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL SCORE                                                                                                                                                                                                              | 77                                                                                                                                                                                                                           |  |
| Component<br>ganic Layer<br>d'Organic Layer (cm)<br>Fael (0.1 - 3.0 meters in boigt<br>te fuel Componition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4]                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                             | Canana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| ganis Layer<br>d Organis Layer (cm)<br>Food (0.1 - 3.0 meters in bolg)<br>to fuel Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4]                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| el Organic Layer (ctr)<br>Foel (0.1 - 3.0 meters in beigt<br>ce fuel Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4]                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| e fuel Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                            | (1                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| e fuel Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ligging I lines                                                                                                                                                                            | IL PAVES, DEC                                                                                                                                                                                                                                                                                                                               | edles, or fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | branch mate                                                                                                                                                                                                              | erial) fuel (<1                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| end Coven Material<br>policially (= 7cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 - 25% Co                                                                                                                                                                                | 10 - 25% Coverage                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| er fuel Companition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spruce / Pine / Fir                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| tier Feal Horizonital<br>Continuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Uniform >60% Coverage                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| nyhu (yinderson)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2501 - 4000                                                                                                                                                                                | )                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| d Composition (Dominant and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Co-Dominant Stems)                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| ruary Composition<br>COH**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conifer w. L                                                                                                                                                                               | Conifer w. Low Crown Base (<5 m)                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| Серып Пакила                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41 - 60%                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| d Strata Gap (mi)***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 3m                                                                                                                                                                                       | < 3m                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| s / ha (overslary)++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 601 - 900                                                                                                                                                                                  | 601 - 900                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
| L Dring (% of dom &<br>codem carms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standing D                                                                                                                                                                                 | Standing Dead / Partial Down (< 20%)                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngha (Understan)*<br>of Composition (Dominant and<br>ordery Composition<br>COMP<br>Crown Electra<br>to Strata Gap (m)***<br>n / ha (overstory)****<br>18 Duing (% of dom &<br>codom crems) | der Fuel Hartsental<br>Cerstnutry Uniform >60<br>2501 - 4000<br>2501 - 4000<br>2501 - 4000<br>2501 - 4000<br>2501 - 4000<br>Composition (Deminant and Co-Dominant Stems)<br>erdory Composition Conifer w. L<br>41 - 60%<br>41 - 60%<br>41 - 900<br>5 Count Generatory)<br>*** 601 - 900<br>5 Count (St of dom & standing D<br>codom streng) | ater Fael Hartsental     Uniform >60% Coverage       derstautry     2501 - 4000       vd Composition (Deminant and Co-Dominant Stems)       erdary Composition (Composition (Comp | Air Fael Harisental<br>Ceressary     Uniform >60% Coverage       Air Fael Harisental<br>Composition (Deminant and Co-Deminant Stems)     2501 - 4000       of Composition<br>Call**     Conifer w. Low Crown Base (<5 m) | der Fael Hartsental<br>Centsuary     Uniform >60% Coverage       atr Fael Hartsental<br>Centsuary     2501 - 4000       w/ha (Underson)*     2501 - 4000       vd Composition<br>Call**     Conifer w. Low Crown Base (<5 m) |  |

|                |                   | Thear Rang May 5009 110                      |        |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-------------------|----------------------------------------------|--------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EcoProvince:   | Southern Interior | fice - uposires                              | LON    | Moderate | migh      | Contraction of the local division of the loc |
|                |                   | Contant<br>Mountaire, Georgia<br>Depression  | ŋ · 43 | 44-59    | 60 - 72   | 73-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                   | Control integrate                            | Q - 46 | 47-61    | 64 - 77   | 78-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                   | Saudiana Interior                            | 9-51   | 52 - 71  | 72-86     | E7-520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                   | Southern Interior<br>Mountains               | 0 - 54 | Q - N    | 73-36     | 87 - 5 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                   | Sub Boreal Elberter                          | 6.43   | 44-59    | 60 - 72   | 78-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                   | Burral Plaurs                                | 55.0   | 44-59    | 60 - 72   | 78-650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Threat Rating: |                   | Narritern Bareal<br>Mountaire, Taige<br>Mero | 0.40   | 41 - 55  | 57 - Kill | 69-530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Total threat score is out of 110 points based on 65 points on ground, surface and ladder fuel, and 45 points on overstory 'Understory is considered ladder and suppressed stems in this category (distinct break between these stems and overstory) "'Overstory is dominant and co dominant stems (Green/ Living) ""Peel Strata Gap – Distance from top of ladder fiel to live crown base height of overstory

Figure 1. Plot 1 Site Level Fuel Assessment

| Wild        | ifire Threat Assessment Work               | ksheet - Fuel Assessment (Site Level) Piot = 2 (Lot 7)                                                          | 12749-52                                                                                                         |  |  |  |
|-------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| Location    | Coalmont, BC                               |                                                                                                                 | ome, RPF, Sidney                                                                                                 |  |  |  |
| Latitude    | 49.50536 Longitude                         |                                                                                                                 | Une, RFF, Sluney                                                                                                 |  |  |  |
|             | cies Composition (species %)               | 120.69014<br>Fd9Pl1                                                                                             | and the second |  |  |  |
|             | el Species Composition                     | 10Fd TOTALSCO                                                                                                   | DRE 75                                                                                                           |  |  |  |
|             | Component                                  | Levels / Classes                                                                                                | an and the second second second                                                                                  |  |  |  |
| Forest Floo | or and Organic Layer                       |                                                                                                                 |                                                                                                                  |  |  |  |
| 1           | 1 – <2 cm                                  |                                                                                                                 |                                                                                                                  |  |  |  |
| Surface an  | d Ladder Fuel (0.1 = 3.0 meters in height  | nt]                                                                                                             |                                                                                                                  |  |  |  |
| 2           | Surface Fuel Composition                   | Lichen, Conifer, Shrubs                                                                                         |                                                                                                                  |  |  |  |
| з           | Dead and Down Material<br>Continuity (Wen) | 10 - 25% Coverage                                                                                               |                                                                                                                  |  |  |  |
| 4           | Lattler Fuel Composition                   | Spruce / Pine / Fir                                                                                             |                                                                                                                  |  |  |  |
| s           | Ladder Fael Horisontal<br>Continuity       | Uniform >60% Coverage                                                                                           | Uniform >60% Coverage                                                                                            |  |  |  |
| 6           | Stems/ha (Understory)*                     | > 4000                                                                                                          |                                                                                                                  |  |  |  |
| Stand Struc | cture and Composition (Dominant and G      | Co-Dominant Stems)                                                                                              |                                                                                                                  |  |  |  |
| 7           | Overatory Composition<br>CBH**             | Conifer w. Low Crown Base (<5 m)                                                                                | nan alagan na ana na nga panana (n na panana ) agan ana tang mana ang ang m                                      |  |  |  |
| 2           | Crown Closure                              | 20 - 40%                                                                                                        | 20 - 40%                                                                                                         |  |  |  |
| 9           | Ford Strate Gap (m)***                     | < 3m                                                                                                            |                                                                                                                  |  |  |  |
| 20          | Sterrs / ha (oversion)****                 | 401 - 600                                                                                                       | 401 - 600                                                                                                        |  |  |  |
| 21          | Deard & Dying (% of dom &<br>codom stems)  | Standing Dead / Partial Down (< 20%)                                                                            |                                                                                                                  |  |  |  |
| Comments    | Fuel free zones will be necessary around   | d structures in zone 1. In loss where a clearing is already present structures would be easiest to build there. |                                                                                                                  |  |  |  |

albiun OI

> Southern Interior Threat Rating (Max Score 110) Coast and Mountains, Georgia EcoProvince: Low 0-43 44-59 60-72 73-110 Depression Central Interior Southern Interior Southern Interior 0-45 0-51 0-51 47-63 52-71 52-71 64 - 77 72 - 86 72 - 85 75-130 87-110 87-110 Mountains High 0-43 0-43 0-40 Sub Bareal Interior Bareal Plains Northern Bareal Mountains, Taiga 44-59 44-59 41-56 68 - 72 68 - 72 57 - 68 73 - 110 73 - 110 69 - 110 Threat Rating: Plains

> > Total threat score is out of 110 points based on 65 points on ground, surface and ladder fuel, and 45 points on overstory "Understory is considered ladder and suppressed stems in this category (distinct break between these stems and overstory) ""Overstory is dominant and co dominant stems (Green/ Living) ""Fuel Strate Gap – Distance from top of ladder fuel to live crown base height of overstory

Figure 2. Plot 2 Site Level Fuel Assessment



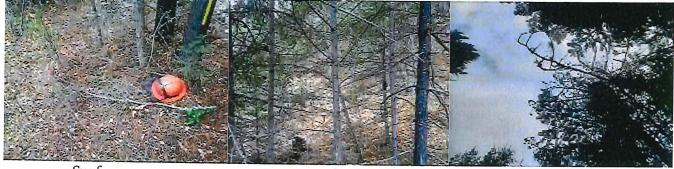
| coalmont, BC    |                                                                        | Date NOV            | Date Nov 12 2019 |            | Kyle Broome, RPF, Sidne |  |  |
|-----------------|------------------------------------------------------------------------|---------------------|------------------|------------|-------------------------|--|--|
| atitude         | 49.50543 Lengitude                                                     | 120.69346           |                  | ABCFP No.  |                         |  |  |
| fäll fuel Type: |                                                                        | NA for private land |                  | Ownership: | Private                 |  |  |
| Auesiar's I     | OP fuel Type:                                                          |                     |                  |            | TOTAL SCORE             |  |  |
|                 | Component                                                              |                     | Levels /         | Classes    |                         |  |  |
| Landscape       | Asieisment                                                             |                     |                  |            |                         |  |  |
| 1               | Pressiveity of Fash Treatment<br>Area to Value (meters)                | 0 - 100             | 0 - 100          |            |                         |  |  |
| 2               | FireSmart are ment in glace to protect the value                       | No                  |                  |            |                         |  |  |
| 3               | Wildfire spread direction<br>(from Ed rose) in relation to<br>value    | 270° Offset to Wind |                  |            |                         |  |  |
| 4               | Distance to rearest vehicle<br>access (m)                              | 0 - 200m            |                  |            |                         |  |  |
| ŝ               | Distance to non-fuel /<br>treated area near the<br>assessment area (m) | 0 - 200m            |                  |            |                         |  |  |
| Tepograpi       | hical Factors                                                          |                     |                  |            |                         |  |  |
| 7               | Topography: Slope %                                                    | < 20%               |                  |            |                         |  |  |
| â               | Tepagraphy: Aspect (> 20%-<br>slope)                                   | Flat                |                  |            | x                       |  |  |
| 9               | Slope position of value<br>(only if slope = 20%)                       |                     |                  |            |                         |  |  |
| Comments        |                                                                        |                     |                  |            |                         |  |  |

Total Score:



Figure 3. Priority Setting Scoring




# **Appendix II: Wildfire Threat Assessment Photos**



Surface

Ladder Figure 4. Plot 1 Site Fuel Strata

Aerial/Crown



Surface

Ladder Figure 5. Plot 2 Site Fuel Strata

Aerial/Crown





Figure 6 Recommended FireSmart Improvements



# **Appendix III: FBP Fuel Type Photos**



Figure 7. FBP Fuel Type C7: Ponderosa pine/Douglas fir



Figure 8. FBP Fuel Type C4: Immature Lodgepole pine



Figure 9. FBP Fuel Type D1: Leafless Deciduous